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Abstract. We propose the precision measurement of both angular rotation and of the gradient magnetic
of a field based on the use of matter wave interferometers with soliton states of a Bose-Einstein condensate
(BEC). We consider the formation of these soliton states in a BEC with negative scattering length by
an optical lattice produced by two counterpropagating laser beams. We determine the parameters of
both the initial condensate and the optical radiation necessary for the formation of coherent solitons. We
demonstrate that this interferometer can be used to measure magnetic field gradient with a precision of
10−2 pT/cm. Our calculations show that the sensitivity of a gyroscope based on a ring, two-port matter
wave interferometer can achieve 2.6 × 10−7 rad s−1. The precision of this method is more than ten times
greater than in that of rotating interferometer with cooled atoms.

PACS. 03.75.Dg Atom and neutron interferometry – 42.50.Vk Mechanical effects of light on atoms –
07.60.Ly Interferometers – 42.87.Bg Phase shifting interferometry

1 Introduction

As atomic Bose-Einstein condensates (BEC) are in wide
use in a large number of laboratories, of great importance
is the question of possible applications of such a macro-
scopic quantum object in the fundamental and applied
science [1–6]. One of the promising applications of a BEC
is in the measurement of different physical quantities with
high precision. In fact, a BEC is almost an ideal tool for
precision measurement as it is very sensitive to influence
from external factors. The key to using a BEC for pre-
cision measurements is the coherent construction of its
spatial state. This is, for example, the case in the interac-
tion between optical and matter waves where BEC split-
ting into a number of momentum groups is used [1], and in
mode-locked atom lasers [3] where the BEC wave function
is spatially modulated by a periodic optical potential, see
also [4]. Recent observations of soliton states of Li atoms
in a cylindrical optical trap [5] (see also [6]) open up new
possibilities in the field of BEC applications such as fre-
quency stabilization [7] and nanolithography based on the
formation of ultra-narrow spatial BEC solitons [8].

In this paper we examine possibilities for the use of
spatial soliton states in a BEC with negative scattering
length for the goal of atomic interferometry. The first step
in the scheme considered is the formation of spatial soliton
states from a BEC by an optical lattice produced by two
counterpropagating laser beams. Next, we demonstrate
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that the use of different types of atomic interferometers
with two BEC solitons as input beams allows one to make
precision measurements of both magnetic field gradient
and angular rotation.

2 Model

We consider a BEC consisting of N atoms of mass M
at temperature less than the critical one, placed in an
optical lattice formed by two counterpropagating laser
beams with wave numbers k, frequency ω, and electric
field strength:

E(z, t) = E0[ei(kz−ωt) + ei(kz+ωt) + c.c.]. (1)

We use the two-level approximation for the atomic system
and define the detuning ∆ from the atomic resonance as
∆ = ω − ω0 where ω0 is the atomic transition frequency.
In order to avoid the effect of spontaneous emission we use
light far from resonance, |∆| � γ, where γ is the spon-
taneous decay rate of the excited atomic level. The cou-
pling of the light field from equation (1) to the atomic sys-
tem is characterized by the Rabi frequency Ω = dE0/2�,
where d is the dipole matrix element of the transition.
If the Rabi frequency is much smaller than the detuning
Ω � |∆|, we can adiabatically eliminate the excited level
of the atomic system [1]. Moreover, the rotating wave ap-
proximation can be used, and the terms varying at twice
the optical frequency ω can be neglected.
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We will assume also that the BEC is well con-
fined along the z-axis, so that the system can be de-
scribed by a spatially one-dimensional time-dependent
Gross-Pitaevskii equation (GPE) for the condensate
one-particle wave function Φ(z, t) of the atom ground state
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∂t
= − �

2

2M
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σ
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Here V (z) = V0 cos2(kz) is the optical potential for the
atomic ground level, V0 = �Ω2/∆ is the lattice depth, a is
the modulus of the scattering length, which is taken to be
negative, σ = 2π�/Mωc is the BEC area transverse to the
z-axis [9], and ωc is the oscillation frequency of the atoms
in the waveguide. The condensate wave function Φ(z, t) is
normalized as follows:

∞∫

−∞
|Φ|2 dz = 1. (3)

After introducing the dimensionless variables z′ = z/zc,
t′ = t/tc, tc = 2Mz2

c/�, the GPE (2) for the function
Ψ(z′, t′) = (8πaz2

cN/σ)1/2Φ(z, t) takes the form
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with the dimensionless amplitude V c
0 = (2Mz2

c/�
2)V0 of

the optical potential V (zc, z
′) = V c

0 cos2(kzcz
′). We as-

sume also that the initial wave function of the BEC, which
is formed in a magnetic trap, has the Gaussian shape

Ψ(z′, t = 0) = exp[−(z′/w)2], (5)

with a width w = 15 much larger than the width of a
soliton with maximum amplitude Ψs = 1. The maximum
concentration in the initial condensate described by (5) is
determined by the spatial scale factor zc as

Nm
c =

N |Φ(0, 0)|2
σ

=
1

8πaz2
c

. (6)

Expressing Φ(z) through Ψ(z′) and using (3), we obtain
after integration over z the number of atoms in the initial
condensate (5), which is found to be

N =
15σ

8
√

2πazc

. (7)

We have to point out that the condition of using an
one-dimensional approach [2]

�ωc <
4π�

2aN

Mσ
|Φ|2 (8)

limits the maximum of the atom concentration in the
BEC to

Nm
c <

1
2aσ

. (9)

In the case of negative scattering length, condition (9)
prevents the collapse of the atomic beam in transversal
direction as well as in the case of optical self-focusing [10].

Fig. 1. Time evolution of the modulus of the condensate wave
function |Ψ(z, t)| after switching off the magnetic field along
the z-axis. The time scale tc = 1 ms, zc = 2 µm.

3 Formation of BEC solitons by an optical
lattice

Let us assume that the initial BEC is located in a mag-
netic trap. At the moment t = t0, the magnetic force along
the z-axis is switched off and the BEC can be considered
as free (of course, along the z-axis only). Such a system
is described by a one-dimensional Gross-Pitaevskii equa-
tion (2) without the optical potential, V (z) = 0. Figure 1
demonstrates the time evolution of the modulus of the
condensate wave function |Ψ(z, t)| after switching off the
magnetic field. One can see the fast irregular decay of the
BEC determined by the modulation instability. An impor-
tant point is that this decay can be controlled by a light
lattice formed by an off-resonant standing optical wave.

Let us examine the conditions of the efficient formation
of quasi-soliton structures of a BEC interacting with an
optical lattice. We will assume that the optical potential
depth V c

0 is much less than the value of the non-linear term
in the right-hand side of equation (4). Then we can carry
out the linearization of equation (4), using the optical po-
tential as a small initial perturbation for the condensate
wave function [11]. For this purpose we look for the solu-
tion of equation (4) for a BEC nearly homogeneous along
the z-axis as

Ψ = (1 + δΨ) exp(it′). (10)

Here δΨ is a small perturbation to the wave function of
free the BEC (when the optical potential V c

0 = 0). In the
general case the perturbation δΨ can be assumed to take
the form

δΨ = a+ exp(iχz′ + αt′) + a∗
− exp(−iχz′ + α∗t′),

where a± are constant amplitudes, α is the perturbation
growth rate, and χ = 2kzc is the spatial frequency of
periodical perturbations. Substituting this expression in
to equation (4) and only keeping terms linear in δΨ , we
obtain

α = χ
√

2 − χ2. (11)

Figure 2a displays the dependence of the growth rate of
small perturbations on their spatial frequency, as given by
numerical simulations of equation (4). As can be seen, the
instability area of spatial frequency χ is in good agreement
with the approximate expression (11). Therefore the con-
dition of exponential increase of small-scale perturbations
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(a)

(b)

Fig. 2. The dependence of magnitude perturbation of the BEC
wave function modulus on spatial frequency χ for the interac-
tion time t = 1.5 ms (a) and time evolution of the modulus
of the condensate wave function |Ψ(z, t)| after interaction with
the optical lattice, V c

0 = 0.02 (b).

is (see also [4])

2kzc ≤
√

2. (12)

Equations (6), (9) show that σ � 4πz2
c , i.e. the number

of atoms in the initial condensate (5) should satisfy the
inequality:

N ≤ 15
2

√
π

2
zc

a
. (13)

Therefore the scale factor zc, which is connected with the
laser wave length according to (12), limits the atom num-
ber in the condensate. At the same time, the atom con-
centration in the initial condensate (5) decreases when
zc increases. Thus the scale factor zc determines also the
critical temperature Tcr at which a condensate can be
formed. Thus, the optimum value of zc can be chosen
as zc = 2 µm. This value zc determines the concentra-
tion Nm

c = 0.7 × 1013 cm−3 and the critical temperature
Tcr ∼ (Nm

c )1/3 ≈ 10−7 K [12] together with the conden-
sate cross-section σ ≤ 5 × 10−7 cm2, i.e. the radius of the
initial condensate rc = 4 µm. For example, for a BEC of
7Li atoms in the state (2,2) with negative scattering length
a = 1.4 × 10−7 cm, the atom number in the initial con-
densate is N = 1.4 × 104 with a BEC length Lc = 60 µm
and a radius of rc = 4 µm. In the case of lithium atoms,
the time scale tc = 1 ms. The wave length of optical ra-
diation which forms the optical lattice can be chosen as
λ = 40 µm [13] which leads to kzc = 0.3, i.e. inequality
(12) is satisfied.

We have to point out that there are periodical oscil-
lations of the width and amplitude of these solitons as a
result of the interaction between the BEC and the optical
lattice (see Fig. 2b). They cannot be considered as internal
modes of one-dimensional BEC solitons because, firstly,
they disappear together with the switching off of the op-
tical field and, secondly, the appearance of internal modes
requires sufficiently strong non-locality of interatomic in-
teraction in a BEC [14]. Therefore we can identify such
structures after switching off the optical lattice as ordi-
nary spatial solitons. The wavefunctions of these solitons
can be assumed to take the form

Φ±
s =

√
B/2

cosh[B(z ∓ vt)]
exp(iγt± iksz), (14)

where B = 2πaNs/σ, γ = (B2 − k2
s)�/2M , v = �ks/M .

The functions Φ±
s are well-known exact solutions of equa-

tion (2) for the depth of optical potential V (z) = 0.
Comparing soliton solutions from (2) and (4), we obtain
the correspondence between atom number in a soliton,
Ns, and the maximum value of the soliton wave function
|Ψm| as

B =
2πaNs

σ
=

|Ψm|√
2zc

. (15)

In the case shown in Figure 2b, the maximum value of
soliton wave function |Ψm| = 1.8 corresponds to a con-
centration Nm

cs = 2.3 × 1013 cm−3. At the same time, the
number of atoms in solitons equals 2Ns = 7.2 × 103 and
they contain ∼51% of the atoms of the initial BEC. As
a result of interaction between the BEC and the optical
lattice (see Fig. 2b), we have obtained two main coherent
solitons moving in opposite directions from the point z = 0
with small velocity v ≈ 0.1 cm/s, whereas the central soli-
ton can be removed by switching off the local magnetic
field.

We have to point out that the width w of the initial
condensate along the z-axis, see equation (5), has been
chosen in such a way that just the two main solitons of
the condensate are generated [15]. To estimate the inten-
sity of far-detuned optical radiation necessary to reach
dimensionless potential depth V c

0 = (2Mz2
c/�

2)V0 ≈ 0.02,
we consider the practical case of 7Li atoms with mass
M = 1.2 × 10−23 g, a scattering length modulus of
a = 27.6a0 = 1.46×10−7 cm, and a dipole moment value of
d = 6×10−17 CGSE. In this case the required intensity of
the far-detuned laser can be estimated as P ≈ 50 W/cm2

with an optical detuning ∆ ≈ 2.8× 1015 rad s−1. Such an
intensity can be reached through focusing the radiation of
a commercial available laser SIFIR (see website coheren-
inc.com).

4 Precision measurements with a soliton
interferometer

4.1 Interference of the BEC soliton states

To observe the interference of the two solitons generated
by the interaction of the initial BEC with the optical
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Fig. 3. Acceleration of solitons by the parabolic external mag-
netic field for different propagation times. The interference pat-
tern is generated by the overlapping of two solitons (see the
inset to the figure). The inset shows the spatial distribution of
the wave function modulus |Ψ(z, t)| at the moment of complete
overlap near the central position.

lattice, let us switch on the external parabolic magnetic
field

Vex = αz′2. (16)

This field changes the direction of propagation of the soli-
tons (see Fig. 3). Then, after their collision, the interfer-
ence of the two solitons occurs. As the solitons are ac-
celerated by the magnetic field (16), the corresponding
distortions of soliton shape result in certain distortions of
the interference pattern. The origin of this distortion is
that different parts of the solitons have different values
of acceleration due to the magnetic field (16). Therefore
the quantity α which determines the curvature of poten-
tial (16) is limited to a value of α � 0.3 (Fig. 3) which
corresponds to α � 10−17 erg/cm2. For larger values of α
the soliton shape may be lost, leading to the destruction
of the interference pattern.

The inset in Figure 3 shows the spatial distribution
of the wave function modulus |Ψ(z)| at the moment of
complete overlap of the two solitons in the central region.
According to equation (14), this distribution can be given
in the form

|Ψ(z)| ∼ ∣∣Φ+ + Φ−∣∣ ∼ |cos(ksz)| . (17)

The interference fringe width ∆z is determined by the final
velocity vfinal of the solitons: ∆z = π/ks = π�/(Mvfinal).

It should be remarked that the solitons passing
through the magnetic waveguide lose atoms due to two-
particle collisions causing the inversion of atomic spin.
This leads to a change in the soliton shape. Assuming that
the rate of this change is slow enough, we obtain the equa-
tion describing the time evolution of the atom number in
soliton [9]

dNs

dt
= −βaN3

s

σ
, (18)

where the rate of two-particle collisions β =
10−14 cm3/s [16]. The solution of equation (18) can
be obtained in the form(

1
N2

s

− 1
N2

is

)
=

2βa

σ2
t,

which describes the decrease in atom number compared
to the initial value Nis.

The critical temperature which corresponds to the
maximum concentration in the solitons after interaction
with the optical lattice is twice higher than the tempera-
ture of the initial condensate. By propagation of the soli-
tons, their concentration decreases, ending to a decrease
of their critical temperature. As the result, a value of crit-
ical temperature Tcr for the soliton corresponding to that
of the initial condensate is reached in a propagation time
of t ≈ 10 s. At the same time, the soliton width increases
from 2 µm up to 6 µm, and the number of atom in solitons
is decreases up to Ns = 2 × 103 in each soliton.

4.2 Sensitivity of interference pattern to magnetic
field gradient

Let us consider now the possibility of the precise measure-
ment of a magnetic field gradient based on the observation
of the interference pattern of the BEC solitons. As one
can see from Figure 2, after interaction of the BEC with
the optical lattice, two coherent solitons appear moving in
opposite directions from the point z = 0 with small veloc-
ity v ≈ 0.1 cm/s. For an observation time t0 ≈ 10 s the
distance between the two main solitons is approximately
equal to 2z0 ≈ 2 cm.

Let us assume that a weak inhomogeneous magnetic
field H(z) is applied, and that this field influences the
solitons during their propagation. As a result, these soli-
tons acquire an acceleration a = −(µ0/M)∂Hz/∂z with
the Bohr magneton µ0 = 0.9 × 10−20 erg/Gs and there-
fore both solitons will be shifted relative to the points ±z0

by a distance

δ =
at20
2

= 4 × 104 ∂H

∂z
. (19)

Therefore, switching on an external parabolic
magnetic field V (z) = αz2 with a curvature
α = 1.6 × 10−22 erg/cm2, we change the initial propaga-
tion directions of these solitons. As a result the solitons
will arrive at the point z = 0 with velocities v ≈ 5 cm/s.
The flight time of solitons in a parabolic potential does
not depend on the initial soliton position. At the same
time the localization of the interference pattern near
the point z = 0 depends on the phase shifts of the
colliding BEC solitons which are given by the following
expressions:

ϕ+ =
M

�

z∫

−(z0+δ)

v+dz, ϕ− =
M

�

z0−δ∫

z

v−dz,

v± =
{

2α

M
[(z0 ± δ)2 − z2]

}1/2

. (20)

Here the quantity ϕ+ (or ϕ−) determines the phase shift
of soliton moving in the positive (or negative) direction of
the z-axis. Substituting equation (16) into equation (14)
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Fig. 4. The soliton-two-input interferometer as a gyroscope.
Initially, the formation of the spatial solitons in the BEC with
negative scattering length by the optical lattice (1) occurs. Af-
ter that each of the two solitons is loaded into the magnetic
waveguide ring (one of the solitons shown as black circle is
loaded to the left hand side of magnetic ring and the other
soliton – the gray circle – is loaded to the right hand side).
These solitons are accelerated by gravity and collide at the
lowest point of the waveguide ring. The interference pattern is
formed in the overlapping soliton area.

we can obtain the spatial dependence of the wave function
modulus |Ψ(z)| for the time of complete overlap between
the two solitons at the point z = 0 in the form

|Ψ(z)|2 ∼ ∣∣eiϕ+ + eiϕ−
∣∣2 ≈ cos2(ks[z + πδ/2]). (21)

As one can see from equation (17), the position of the
fringes depends on the displacement δ which is propor-
tional to the gradient of the magnetic field, equation (15).
Assuming that the displacement δ = δf = π/2ks, we can
estimate the precision of the measurement of magnetic
field gradient as

∂H

∂z
= 10−9 Gs/cm = 10−2 pT/cm. (22)

At the same time, the wave number of the interference
pattern is about ks = 6 × 104 cm−1; this value of ks has
been obtain with a soliton velocity vfinal ≈ 5 cm/s. At the
same time, each interference fringe contains approximately
200 atoms.

4.3 Measurement of angular rotation

In the previous section we have considered the possibility
of performing precision measurements of a magnetic field
gradient with an atom wave interferometer which uses in
its arms BEC solitons instead of single atoms. Let us now
consider how this type of interferometer can be applied to
the measurement of an angular rotation. For this purpose
we use solitons inside a Sagnac interferometer. To realize
this type of interferometer, these solitons which are ini-
tially generated by an optical lattice should be put into
a magnetic waveguide ring with radius R (Fig. 4). The
plane of this ring is inclined to the horizontal plane at an
angle of about H/2R where H is the inclination height.
Each soliton is accelerated by gravity, and they collide at
the lower point of the ring (Fig. 4). In this area, an inter-
ference pattern with the period 1/ks is formed. The wave

number of the pattern ks is determined by the velocity
that the solitons acquire in the waveguide

vf =
√

2gH, (23)

where g is the gravitational acceleration.
To obtain an interference pattern wave number as

above, the value of H must be H � 0.015 cm. In this
case, the propagation time τs of the solitons in the ring
can be obtained as

τs =

πr∫

0

dl

v
=

2R

vs
K(r), r =

√
2/(2 + γ), γ = 2 (νi/νs)

2

(24)
where K is the elliptic integral of the first kind, and νi,s

are the initial and final velocities of the solitons. For the
maximum propagation time τs � 10 s, the initial and final
velocities are vi = 0.1 cm/s, and vf = 5 cm/s, which corre-
spond to K = 5.4, and the radius of the ring which deter-
mines the precision of the rotation measurements is given
by R ≤ 4.6 cm To increase the precision measurement of
angular rotation we accelerate solitons when they begin to
move along the ring by switching on an external magnetic
field with the potential (16) where α = 6×10−22 erg/cm2.
As a result, the soliton velocity increases much faster as
compared to the case when the external field is absent;
e.g., the soliton velocity is 2 cm/s after an interaction
time of 0.4 s with the potential (16). The time during
which the external magnetic field acts on our system is
much less than the propagation time τs ≈ 10 s. There-
fore assuming this as the initial soliton velocity we can
estimate the radius of the ring to be R � 10 cm.

Let us assume that our setup rotates with an angular
velocity ∆ω. Then, the interference pattern will shift rel-
ative to the lower point of the ring on the value ∆ωRτs.
In this case the precision of an angular rotation measure-
ment ∆ωmin can be determined to be the change of an-
gular velocity, which leads to an interference pattern shift
of π/2ks:

∆ωmin =
π

2ksRτs
= 2.6 × 10−7 rad/s = 3.5 × 10−3Ωe,

(25)
where Ωe is the Earth’s rotation velocity. We have to point
out that the precision of such a method is much higher
compared to the measurement of angular rotation based
on a rotating interferometer with cooled atoms [17].

5 Summary

We have shown that the use of the soliton states of a Bose-
Einstein condensate with negative scattering length in an
atom interferometer allows us to make precision measure-
ments of both magnetic field gradient and angular veloc-
ity. We have demonstrated that the sensitivity of such a
soliton interferometer to variations of magnetic field can
reach 10−9 Gs/cm. This value of sensitivity is much bet-
ter compared to known methods. We have to point out
that the sensitivity of soliton Sagnac interferometer is ten
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times higher than the ultimate sensitivity of a gyroscope
based on cooled atoms [4]. At the same time, we do not
discuss here the ultimate sensitivity of the soliton interfer-
ometer because it is not limited by quantum noise (unlike
an interferometer based on cooled atoms).
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